Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113674, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38236776

RESUMO

Neuropeptide Y (NPY) is best known for its effects in the brain as an orexigenic and anxiolytic agent and in reducing energy expenditure. NPY is also co-expressed with norepinephrine (NE) in sympathetic neurons. Although NPY is generally considered to modulate noradrenergic responses, its specific roles in autonomic physiology remain under-appreciated. Here, we show that sympathetic-derived NPY is essential for metabolic and cardiovascular regulation in mice. NPY and NE are co-expressed in 90% of prevertebral sympathetic neurons and only 43% of paravertebral neurons. NPY-expressing neurons primarily innervate blood vessels in peripheral organs. Sympathetic-specific NPY deletion elicits pronounced metabolic and cardiovascular defects in mice, including reductions in insulin secretion, glucose tolerance, cold tolerance, and pupil size and elevated heart rate, while notably, however, basal blood pressure was unchanged. These findings provide insight into target tissue-specific functions of NPY derived from sympathetic neurons and imply its potential involvement in metabolic and cardiovascular diseases.


Assuntos
Ansiolíticos , Neuropeptídeo Y , Animais , Camundongos , Pressão Sanguínea , Norepinefrina , Homeostase , Glucose
2.
PLoS Biol ; 21(12): e3002412, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048352

RESUMO

Visual system function depends upon the elaboration of precise connections between retinal ganglion cell (RGC) axons and their central targets in the brain. Though some progress has been made in defining the molecules that regulate RGC connectivity required for the assembly and function of image-forming circuitry, surprisingly little is known about factors required for intrinsically photosensitive RGCs (ipRGCs) to target a principal component of the non-image-forming circuitry: the suprachiasmatic nucleus (SCN). Furthermore, the molecules required for forming circuits critical for circadian behaviors within the SCN are not known. We observe here that the adhesion molecule teneurin-3 (Tenm3) is highly expressed in vasoactive intestinal peptide (VIP) neurons located in the core region of the SCN. Since Tenm3 is required for other aspects of mammalian visual system development, we investigate roles for Tenm3 in regulating ipRGC-SCN connectivity and function. Our results show that Tenm3 negatively regulates association between VIP and arginine vasopressin (AVP) neurons within the SCN and is essential for M1 ipRGC axon innervation to the SCN. Specifically, in Tenm3-/- mice, we find a reduction in ventro-medial innervation to the SCN. Despite this reduction, Tenm3-/- mice have higher sensitivity to light and faster re-entrainment to phase advances, probably due to the increased association between VIP and AVP neurons. These data show that Tenm3 plays key roles in elaborating non-image-forming visual system circuitry and that it influences murine responses to phase-advancing light stimuli.


Assuntos
Axônios , Células Ganglionares da Retina , Animais , Camundongos , Axônios/metabolismo , Ritmo Circadiano/fisiologia , Mamíferos/metabolismo , Células Ganglionares da Retina/fisiologia , Núcleo Supraquiasmático/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
3.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546870

RESUMO

Neuropeptide Y (NPY) is best known for its effects in the brain as an orexigenic and anxiolytic agent and in reducing energy expenditure. NPY is also co-expressed with Norepinephrine (NE) in sympathetic neurons. Although NPY is generally considered to modulate noradrenergic responses, its specific roles in autonomic physiology remain under-appreciated. Here, we show that sympathetic-derived NPY is essential for metabolic and cardiovascular regulation in mice. NPY and NE are co-expressed in 90% of prevertebral sympathetic neurons and only 43% of paravertebral neurons. NPY-expressing neurons primarily innervate blood vessels in peripheral organs. Sympathetic-specific deletion of NPY elicits pronounced metabolic and cardiovascular defects in mice, including reductions in insulin secretion, glucose tolerance, cold tolerance, pupil size, and an elevation in heart rate, while notably, however, basal blood pressure was unchanged. These findings provide new knowledge about target tissue-specific functions of NPY derived from sympathetic neurons and imply its potential involvement in metabolic and cardiovascular diseases.

4.
J Comp Neurol ; 529(8): 1863-1875, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33104235

RESUMO

Retinal ganglion cells (RGCs), the output neurons of the retina, allow us to perceive our visual environment. RGCs respond to rod/cone input through the retinal circuitry, however, a small population of RGCs are in addition intrinsically photosensitive (ipRGCs) and project to unique targets in the brain to modulate a broad range of subconscious visual behaviors such as pupil constriction and circadian photoentrainment. Despite the discovery of ipRGCs nearly two decades ago, there is still little information about how or if conventional RGCs (non-ipRGCs) target ipRGC-recipient nuclei to influence subconscious visual behavior. Using a dual recombinase fluorescent reporter strategy, we showed that conventional RGCs innervate many subconscious ipRGC-recipient nuclei, apart from the suprachiasmatic nucleus. We revealed previously unrecognized stratification patterns of retinal innervation from ipRGCs and conventional RGCs in the ventral portion of the lateral geniculate nucleus. Further, we found that the percent innervation of ipRGCs and conventional RGCs across ipsi- and contralateral nuclei differ. Our data provide a blueprint to understand how conventional RGCs and ipRGCs innervate different brain regions to influence subconscious visual behaviors.


Assuntos
Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Camundongos
5.
PLoS Biol ; 17(2): e2006409, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30759083

RESUMO

Dysregulation of sleep and feeding has widespread health consequences. Despite extensive epidemiological evidence for interactions between sleep and metabolic function, little is known about the neural or molecular basis underlying the integration of these processes. D. melanogaster potently suppress sleep in response to starvation, and powerful genetic tools allow for mechanistic investigation of sleep-metabolism interactions. We have previously identified neurons expressing the neuropeptide leucokinin (Lk) as being required for starvation-mediated changes in sleep. Here, we demonstrate an essential role for Lk neuropeptide in metabolic regulation of sleep. The activity of Lk neurons is modulated by feeding, with reduced activity in response to glucose and increased activity under starvation conditions. Both genetic silencing and laser-mediated microablation localize Lk-dependent sleep regulation to a single pair of Lk neurons within the Lateral Horn (LHLK neurons). A targeted screen identified a role for 5' adenosine monophosphate-activated protein kinase (AMPK) in starvation-modulated changes in sleep. Knockdown of AMPK in Lk neurons suppresses sleep and increases LHLK neuron activity in fed flies, phenocopying the starvation state. Further, we find a requirement for the Lk receptor in the insulin-producing cells (IPCs), suggesting LHLK-IPC connectivity is critical for sleep regulation under starved conditions. Taken together, these findings localize feeding-state-dependent regulation of sleep to a single pair of neurons within the fruit fly brain and provide a system for investigating the cellular basis of sleep-metabolism interactions.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Sono/fisiologia , Adenilato Quinase/metabolismo , Animais , Terapia a Laser , Inanição , Vigília
6.
PLoS Genet ; 14(11): e1007767, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30457986

RESUMO

Behavior and physiology are orchestrated by neuropeptides acting as central neuromodulators and circulating hormones. An outstanding question is how these neuropeptides function to coordinate complex and competing behaviors. In Drosophila, the neuropeptide leucokinin (LK) modulates diverse functions, but mechanisms underlying these complex interactions remain poorly understood. As a first step towards understanding these mechanisms, we delineated LK circuitry that governs various aspects of post-feeding physiology and behavior. We found that impaired LK signaling in Lk and Lk receptor (Lkr) mutants affects diverse but coordinated processes, including regulation of stress, water homeostasis, feeding, locomotor activity, and metabolic rate. Next, we sought to define the populations of LK neurons that contribute to the different aspects of this physiology. We find that the calcium activity in abdominal ganglia LK neurons (ABLKs), but not in the two sets of brain neurons, increases specifically following water consumption, suggesting that ABLKs regulate water homeostasis and its associated physiology. To identify targets of LK peptide, we mapped the distribution of Lkr expression, mined a brain single-cell transcriptome dataset for genes coexpressed with Lkr, and identified synaptic partners of LK neurons. Lkr expression in the brain insulin-producing cells (IPCs), gut, renal tubules and chemosensory cells, correlates well with regulatory roles detected in the Lk and Lkr mutants. Furthermore, these mutants and flies with targeted knockdown of Lkr in IPCs displayed altered expression of insulin-like peptides (DILPs) and transcripts in IPCs and increased starvation resistance. Thus, some effects of LK signaling appear to occur via DILP action. Collectively, our data suggest that the three sets of LK neurons have different targets, but modulate the establishment of post-prandial homeostasis by regulating distinct physiological processes and behaviors such as diuresis, metabolism, organismal activity and insulin signaling. These findings provide a platform for investigating feeding-related neuroendocrine regulation of vital behavior and physiology.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Diurese/genética , Diurese/fisiologia , Proteínas de Drosophila/deficiência , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Insulina/fisiologia , Masculino , Atividade Motora/genética , Atividade Motora/fisiologia , Mutação , Neurônios/classificação , Neurônios/fisiologia , Neuropeptídeos/deficiência , Período Pós-Prandial/genética , Período Pós-Prandial/fisiologia , Receptores de Neuropeptídeos/deficiência , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/fisiologia , Transdução de Sinais
7.
G3 (Bethesda) ; 8(11): 3385-3395, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30249751

RESUMO

Metabolic state is a potent modulator of sleep and circadian behavior, and animals acutely modulate their sleep in accordance with internal energy stores and food availability. Across phyla, hormones secreted from adipose tissue act in the brain to control neural physiology and behavior to modulate sleep and metabolic state. Growing evidence suggests the fat body is a critical regulator of complex behaviors, but little is known about the genes that function within the fat body to regulate sleep. To identify molecular factors functioning in non-neuronal tissues to regulate sleep, we performed an RNAi screen selectively knocking down genes in the fat body. We found that knockdown of Phosphoribosylformylglycinamidine synthase/Pfas (Ade2), a highly conserved gene involved the biosynthesis of purines, sleep regulation and energy stores. Flies heterozygous for multiple Ade2 mutations are also short sleepers and this effect is partially rescued by restoring Ade2 to the Drosophila fat body. Targeted knockdown of Ade2 in the fat body does not alter arousal threshold or the homeostatic response to sleep deprivation, suggesting a specific role in modulating baseline sleep duration. Together, these findings suggest Ade2 functions within the fat body to promote both sleep and energy storage, providing a functional link between these processes.


Assuntos
Carbono-Nitrogênio Ligases/fisiologia , Drosophila/fisiologia , Corpo Adiposo/fisiologia , Sono/fisiologia , Animais , Feminino , Glucose/metabolismo , Triglicerídeos/metabolismo
8.
Curr Biol ; 28(7): R317-R319, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614291

RESUMO

A new study in the fruit fly, Drosophila melanogaster, has identified a neural circuitry that connects regions that control sleep with those that encode sleep pressure. These novel cells, termed helicon cells for their unique morphology, are modulated by sleep control centers and integrate sensory information, providing a novel mechanism for gating of sleep.


Assuntos
Drosophila melanogaster , Sono , Animais , Drosophila
9.
PLoS Genet ; 13(11): e1007059, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29121639

RESUMO

Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants.


Assuntos
Proteínas de Drosophila/genética , Ácidos Graxos não Esterificados/genética , Receptores de Superfície Celular/genética , Células Receptoras Sensoriais/metabolismo , Percepção Gustatória/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Ácidos Graxos não Esterificados/metabolismo , Regulação da Expressão Gênica , Receptores de Superfície Celular/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Açúcares/metabolismo , Paladar/genética , Paladar/fisiologia
10.
Elife ; 52016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27873574

RESUMO

Food consumption is thought to induce sleepiness. However, little is known about how postprandial sleep is regulated. Here, we simultaneously measured sleep and food intake of individual flies and found a transient rise in sleep following meals. Depending on the amount consumed, the effect ranged from slightly arousing to strongly sleep inducing. Postprandial sleep was positively correlated with ingested volume, protein, and salt-but not sucrose-revealing meal property-specific regulation. Silencing of leucokinin receptor (Lkr) neurons specifically reduced sleep induced by protein consumption. Thermogenetic stimulation of leucokinin (Lk) neurons decreased whereas Lk downregulation by RNAi increased postprandial sleep, suggestive of an inhibitory connection in the Lk-Lkr circuit. We further identified a subset of non-leucokininergic cells proximal to Lkr neurons that rhythmically increased postprandial sleep when silenced, suggesting that these cells are cyclically gated inhibitory inputs to Lkr neurons. Together, these findings reveal the dynamic nature of postprandial sleep.


Assuntos
Drosophila/fisiologia , Ingestão de Alimentos , Período Pós-Prandial , Sono , Animais , Neurônios/fisiologia
11.
Curr Biol ; 26(7): 972-980, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27020744

RESUMO

Dysregulation of sleep or feeding has enormous health consequences. In humans, acute sleep loss is associated with increased appetite and insulin insensitivity, while chronically sleep-deprived individuals are more likely to develop obesity, metabolic syndrome, type II diabetes, and cardiovascular disease. Conversely, metabolic state potently modulates sleep and circadian behavior; yet, the molecular basis for sleep-metabolism interactions remains poorly understood. Here, we describe the identification of translin (trsn), a highly conserved RNA/DNA binding protein, as essential for starvation-induced sleep suppression. Strikingly, trsn does not appear to regulate energy stores, free glucose levels, or feeding behavior suggesting the sleep phenotype of trsn mutant flies is not a consequence of general metabolic dysfunction or blunted response to starvation. While broadly expressed in all neurons, trsn is transcriptionally upregulated in the heads of flies in response to starvation. Spatially restricted rescue or targeted knockdown localizes trsn function to neurons that produce the tachykinin family neuropeptide Leucokinin. Manipulation of neural activity in Leucokinin neurons revealed these neurons to be required for starvation-induced sleep suppression. Taken together, these findings establish trsn as an essential integrator of sleep and metabolic state, with implications for understanding the neural mechanism underlying sleep disruption in response to environmental perturbation.


Assuntos
Drosophila melanogaster/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Alimentar , Humanos , Modelos Animais , Sono , Inanição
12.
Artigo em Inglês | MEDLINE | ID: mdl-25236355

RESUMO

Dysregulation of sleep and metabolism has enormous health consequences. Sleep loss is linked to increased appetite and insulin insensitivity, and epidemiological studies link chronic sleep deprivation to obesity-related disorders including type II diabetes and cardiovascular disease. Interactions between sleep and metabolism involve the integration of signaling from brain regions regulating sleep, feeding, and metabolic function. Investigating the relationship between these processes provides a model to address more general questions of how the brain prioritizes homeostatically regulated behaviors. The availability of powerful genetic tools in the fruit fly, Drosophila melanogaster, allows for precise manipulation of neural function in freely behaving animals. There is a strong conservation of genes and neural circuit principles regulating sleep and metabolic function, and genetic screens in fruit flies have been effective in identifying novel regulators of these processes. Here, we review recent findings in the fruit fly that further our understanding of how the brain modulates sleep in accordance with metabolic state.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Metabolismo/genética , Metabolismo/fisiologia , Sono/genética , Sono/fisiologia , Animais , Hormônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...